1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
//
// DO NOT EDIT.  THIS FILE IS GENERATED FROM ../../../dist/idl/nsIASN1Tree.idl
//


/// `interface nsIASN1Tree : nsITreeView`
///


// The actual type definition for the interface. This struct has methods
// declared on it which will call through its vtable. You never want to pass
// this type around by value, always pass it behind a reference.

#[repr(C)]
pub struct nsIASN1Tree {
    vtable: *const nsIASN1TreeVTable,

    /// This field is a phantomdata to ensure that the VTable type and any
    /// struct containing it is not safe to send across threads, as XPCOM is
    /// generally not threadsafe.
    ///
    /// XPCOM interfaces in general are not safe to send across threads.
    __nosync: ::std::marker::PhantomData<::std::rc::Rc<u8>>,
}

// Implementing XpCom for an interface exposes its IID, which allows for easy
// use of the `.query_interface<T>` helper method. This also defines that
// method for nsIASN1Tree.
unsafe impl XpCom for nsIASN1Tree {
    const IID: nsIID = nsID(0xde142307, 0x7b88, 0x4e0a,
        [0xb2, 0x32, 0x25, 0x0f, 0x31, 0x0e, 0x25, 0xd8]);
}

// We need to implement the RefCounted trait so we can be used with `RefPtr`.
// This trait teaches `RefPtr` how to manage our memory.
unsafe impl RefCounted for nsIASN1Tree {
    #[inline]
    unsafe fn addref(&self) {
        self.AddRef();
    }
    #[inline]
    unsafe fn release(&self) {
        self.Release();
    }
}

// This trait is implemented on all types which can be coerced to from nsIASN1Tree.
// It is used in the implementation of `fn coerce<T>`. We hide it from the
// documentation, because it clutters it up a lot.
#[doc(hidden)]
pub trait nsIASN1TreeCoerce {
    /// Cheaply cast a value of this type from a `nsIASN1Tree`.
    fn coerce_from(v: &nsIASN1Tree) -> &Self;
}

// The trivial implementation: We can obviously coerce ourselves to ourselves.
impl nsIASN1TreeCoerce for nsIASN1Tree {
    #[inline]
    fn coerce_from(v: &nsIASN1Tree) -> &Self {
        v
    }
}

impl nsIASN1Tree {
    /// Cast this `nsIASN1Tree` to one of its base interfaces.
    #[inline]
    pub fn coerce<T: nsIASN1TreeCoerce>(&self) -> &T {
        T::coerce_from(self)
    }
}

// Every interface struct type implements `Deref` to its base interface. This
// causes methods on the base interfaces to be directly avaliable on the
// object. For example, you can call `.AddRef` or `.QueryInterface` directly
// on any interface which inherits from `nsISupports`.
impl ::std::ops::Deref for nsIASN1Tree {
    type Target = nsITreeView;
    #[inline]
    fn deref(&self) -> &nsITreeView {
        unsafe {
            ::std::mem::transmute(self)
        }
    }
}

// Ensure we can use .coerce() to cast to our base types as well. Any type which
// our base interface can coerce from should be coercable from us as well.
impl<T: nsITreeViewCoerce> nsIASN1TreeCoerce for T {
    #[inline]
    fn coerce_from(v: &nsIASN1Tree) -> &Self {
        T::coerce_from(v)
    }
}

// This struct represents the interface's VTable. A pointer to a statically
// allocated version of this struct is at the beginning of every nsIASN1Tree
// object. It contains one pointer field for each method in the interface. In
// the case where we can't generate a binding for a method, we include a void
// pointer.
#[doc(hidden)]
#[repr(C)]
pub struct nsIASN1TreeVTable {
    /// We need to include the members from the base interface's vtable at the start
    /// of the VTable definition.
    pub __base: nsITreeViewVTable,

    /* [must_use] void loadASN1Structure (in nsIASN1Object asn1Object); */
    pub LoadASN1Structure: unsafe extern "system" fn (this: *const nsIASN1Tree, asn1Object: *const nsIASN1Object) -> nsresult,

    /* [must_use] AString getDisplayData (in unsigned long index); */
    pub GetDisplayData: unsafe extern "system" fn (this: *const nsIASN1Tree, index: libc::uint32_t, _retval: &mut ::nsstring::nsAString) -> nsresult,
}


// The implementations of the function wrappers which are exposed to rust code.
// Call these methods rather than manually calling through the VTable struct.
impl nsIASN1Tree {


    /// `[must_use] void loadASN1Structure (in nsIASN1Object asn1Object);`
    #[inline]
    pub unsafe fn LoadASN1Structure(&self, asn1Object: *const nsIASN1Object) -> nsresult {
        ((*self.vtable).LoadASN1Structure)(self, asn1Object)
    }



    /// `[must_use] AString getDisplayData (in unsigned long index);`
    #[inline]
    pub unsafe fn GetDisplayData(&self, index: libc::uint32_t, _retval: &mut ::nsstring::nsAString) -> nsresult {
        ((*self.vtable).GetDisplayData)(self, index, _retval)
    }


}