1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
//
// DO NOT EDIT.  THIS FILE IS GENERATED FROM ../../../dist/idl/nsIProtocolProxyService2.idl
//


/// `interface nsIProtocolProxyService2 : nsIProtocolProxyService`
///

/// ```text
/// /**
///  * An extension of nsIProtocolProxyService
///  */
/// ```
///

// The actual type definition for the interface. This struct has methods
// declared on it which will call through its vtable. You never want to pass
// this type around by value, always pass it behind a reference.

#[repr(C)]
pub struct nsIProtocolProxyService2 {
    vtable: *const nsIProtocolProxyService2VTable,

    /// This field is a phantomdata to ensure that the VTable type and any
    /// struct containing it is not safe to send across threads, as XPCOM is
    /// generally not threadsafe.
    ///
    /// XPCOM interfaces in general are not safe to send across threads.
    __nosync: ::std::marker::PhantomData<::std::rc::Rc<u8>>,
}

// Implementing XpCom for an interface exposes its IID, which allows for easy
// use of the `.query_interface<T>` helper method. This also defines that
// method for nsIProtocolProxyService2.
unsafe impl XpCom for nsIProtocolProxyService2 {
    const IID: nsIID = nsID(0xb2e5b2c0, 0xe21e, 0x4845,
        [0xb3, 0x36, 0xbe, 0x6d, 0x60, 0xa3, 0x89, 0x51]);
}

// We need to implement the RefCounted trait so we can be used with `RefPtr`.
// This trait teaches `RefPtr` how to manage our memory.
unsafe impl RefCounted for nsIProtocolProxyService2 {
    #[inline]
    unsafe fn addref(&self) {
        self.AddRef();
    }
    #[inline]
    unsafe fn release(&self) {
        self.Release();
    }
}

// This trait is implemented on all types which can be coerced to from nsIProtocolProxyService2.
// It is used in the implementation of `fn coerce<T>`. We hide it from the
// documentation, because it clutters it up a lot.
#[doc(hidden)]
pub trait nsIProtocolProxyService2Coerce {
    /// Cheaply cast a value of this type from a `nsIProtocolProxyService2`.
    fn coerce_from(v: &nsIProtocolProxyService2) -> &Self;
}

// The trivial implementation: We can obviously coerce ourselves to ourselves.
impl nsIProtocolProxyService2Coerce for nsIProtocolProxyService2 {
    #[inline]
    fn coerce_from(v: &nsIProtocolProxyService2) -> &Self {
        v
    }
}

impl nsIProtocolProxyService2 {
    /// Cast this `nsIProtocolProxyService2` to one of its base interfaces.
    #[inline]
    pub fn coerce<T: nsIProtocolProxyService2Coerce>(&self) -> &T {
        T::coerce_from(self)
    }
}

// Every interface struct type implements `Deref` to its base interface. This
// causes methods on the base interfaces to be directly avaliable on the
// object. For example, you can call `.AddRef` or `.QueryInterface` directly
// on any interface which inherits from `nsISupports`.
impl ::std::ops::Deref for nsIProtocolProxyService2 {
    type Target = nsIProtocolProxyService;
    #[inline]
    fn deref(&self) -> &nsIProtocolProxyService {
        unsafe {
            ::std::mem::transmute(self)
        }
    }
}

// Ensure we can use .coerce() to cast to our base types as well. Any type which
// our base interface can coerce from should be coercable from us as well.
impl<T: nsIProtocolProxyServiceCoerce> nsIProtocolProxyService2Coerce for T {
    #[inline]
    fn coerce_from(v: &nsIProtocolProxyService2) -> &Self {
        T::coerce_from(v)
    }
}

// This struct represents the interface's VTable. A pointer to a statically
// allocated version of this struct is at the beginning of every nsIProtocolProxyService2
// object. It contains one pointer field for each method in the interface. In
// the case where we can't generate a binding for a method, we include a void
// pointer.
#[doc(hidden)]
#[repr(C)]
pub struct nsIProtocolProxyService2VTable {
    /// We need to include the members from the base interface's vtable at the start
    /// of the VTable definition.
    pub __base: nsIProtocolProxyServiceVTable,

    /* void reloadPAC (); */
    pub ReloadPAC: unsafe extern "system" fn (this: *const nsIProtocolProxyService2) -> nsresult,

    /* nsICancelable asyncResolve2 (in nsIChannel aChannel, in unsigned long aFlags, in nsIProtocolProxyCallback aCallback, [optional] in nsIEventTarget aMainThreadTarget); */
    pub AsyncResolve2: unsafe extern "system" fn (this: *const nsIProtocolProxyService2, aChannel: *const nsIChannel, aFlags: libc::uint32_t, aCallback: *const nsIProtocolProxyCallback, aMainThreadTarget: *const nsIEventTarget, _retval: *mut *const nsICancelable) -> nsresult,
}


// The implementations of the function wrappers which are exposed to rust code.
// Call these methods rather than manually calling through the VTable struct.
impl nsIProtocolProxyService2 {

    /// ```text
    /// /**
    ///    * Call this method to cause the PAC file (if any is configured) to be
    ///    * reloaded.  The PAC file is loaded asynchronously.
    ///    */
    /// ```
    ///

    /// `void reloadPAC ();`
    #[inline]
    pub unsafe fn ReloadPAC(&self, ) -> nsresult {
        ((*self.vtable).ReloadPAC)(self, )
    }


    /// ```text
    /// /**
    ///      * This method is identical to asyncResolve() except:
    ///      *  - it only accepts an nsIChannel, not an nsIURI;
    ///      *  - it may execute the callback function immediately (i.e from the stack
        ///      *    of asyncResolve2()) if it is immediately ready to run.
    ///      *    The nsICancelable return value will be null in that case.
    ///      */
    /// ```
    ///

    /// `nsICancelable asyncResolve2 (in nsIChannel aChannel, in unsigned long aFlags, in nsIProtocolProxyCallback aCallback, [optional] in nsIEventTarget aMainThreadTarget);`
    #[inline]
    pub unsafe fn AsyncResolve2(&self, aChannel: *const nsIChannel, aFlags: libc::uint32_t, aCallback: *const nsIProtocolProxyCallback, aMainThreadTarget: *const nsIEventTarget, _retval: *mut *const nsICancelable) -> nsresult {
        ((*self.vtable).AsyncResolve2)(self, aChannel, aFlags, aCallback, aMainThreadTarget, _retval)
    }


}