1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
//
// DO NOT EDIT.  THIS FILE IS GENERATED FROM ../../../dist/idl/nsIXULSortService.idl
//


/// `interface nsIXULSortService : nsISupports`
///

/// ```text
/// /**
///  * A service used to sort the contents of a XUL widget.
///  */
/// ```
///

// The actual type definition for the interface. This struct has methods
// declared on it which will call through its vtable. You never want to pass
// this type around by value, always pass it behind a reference.

#[repr(C)]
pub struct nsIXULSortService {
    vtable: *const nsIXULSortServiceVTable,

    /// This field is a phantomdata to ensure that the VTable type and any
    /// struct containing it is not safe to send across threads, as XPCOM is
    /// generally not threadsafe.
    ///
    /// XPCOM interfaces in general are not safe to send across threads.
    __nosync: ::std::marker::PhantomData<::std::rc::Rc<u8>>,
}

// Implementing XpCom for an interface exposes its IID, which allows for easy
// use of the `.query_interface<T>` helper method. This also defines that
// method for nsIXULSortService.
unsafe impl XpCom for nsIXULSortService {
    const IID: nsIID = nsID(0xf29270c8, 0x3be5, 0x4046,
        [0x9b, 0x57, 0x94, 0x5a, 0x84, 0xdf, 0xf1, 0x32]);
}

// We need to implement the RefCounted trait so we can be used with `RefPtr`.
// This trait teaches `RefPtr` how to manage our memory.
unsafe impl RefCounted for nsIXULSortService {
    #[inline]
    unsafe fn addref(&self) {
        self.AddRef();
    }
    #[inline]
    unsafe fn release(&self) {
        self.Release();
    }
}

// This trait is implemented on all types which can be coerced to from nsIXULSortService.
// It is used in the implementation of `fn coerce<T>`. We hide it from the
// documentation, because it clutters it up a lot.
#[doc(hidden)]
pub trait nsIXULSortServiceCoerce {
    /// Cheaply cast a value of this type from a `nsIXULSortService`.
    fn coerce_from(v: &nsIXULSortService) -> &Self;
}

// The trivial implementation: We can obviously coerce ourselves to ourselves.
impl nsIXULSortServiceCoerce for nsIXULSortService {
    #[inline]
    fn coerce_from(v: &nsIXULSortService) -> &Self {
        v
    }
}

impl nsIXULSortService {
    /// Cast this `nsIXULSortService` to one of its base interfaces.
    #[inline]
    pub fn coerce<T: nsIXULSortServiceCoerce>(&self) -> &T {
        T::coerce_from(self)
    }
}

// Every interface struct type implements `Deref` to its base interface. This
// causes methods on the base interfaces to be directly avaliable on the
// object. For example, you can call `.AddRef` or `.QueryInterface` directly
// on any interface which inherits from `nsISupports`.
impl ::std::ops::Deref for nsIXULSortService {
    type Target = nsISupports;
    #[inline]
    fn deref(&self) -> &nsISupports {
        unsafe {
            ::std::mem::transmute(self)
        }
    }
}

// Ensure we can use .coerce() to cast to our base types as well. Any type which
// our base interface can coerce from should be coercable from us as well.
impl<T: nsISupportsCoerce> nsIXULSortServiceCoerce for T {
    #[inline]
    fn coerce_from(v: &nsIXULSortService) -> &Self {
        T::coerce_from(v)
    }
}

// This struct represents the interface's VTable. A pointer to a statically
// allocated version of this struct is at the beginning of every nsIXULSortService
// object. It contains one pointer field for each method in the interface. In
// the case where we can't generate a binding for a method, we include a void
// pointer.
#[doc(hidden)]
#[repr(C)]
pub struct nsIXULSortServiceVTable {
    /// We need to include the members from the base interface's vtable at the start
    /// of the VTable definition.
    pub __base: nsISupportsVTable,

    /* void sort (in nsIDOMNode aNode, in AString aSortKey, in AString aSortHints); */
    pub Sort: unsafe extern "system" fn (this: *const nsIXULSortService, aNode: *const nsIDOMNode, aSortKey: &::nsstring::nsAString, aSortHints: &::nsstring::nsAString) -> nsresult,
}


// The implementations of the function wrappers which are exposed to rust code.
// Call these methods rather than manually calling through the VTable struct.
impl nsIXULSortService {

    pub const SORT_COMPARECASE: i64 = 1;


    pub const SORT_INTEGER: i64 = 256;

    /// ```text
    /// /**
    ///      * Sort the contents of the widget containing <code>aNode</code>
    ///      * using <code>aSortKey</code> as the comparison key, and
    ///      * <code>aSortDirection</code> as the direction.
    ///      *
    ///      * @param aNode A node in the XUL widget whose children are to be sorted.
    ///      * @param aSortKey The value to be used as the comparison key.
    ///      * @param aSortHints One or more hints as to how to sort:
    ///      *
    ///      *   ascending: to sort the contents in ascending order
    ///      *   descending: to sort the contents in descending order
    ///      *   comparecase: perform case sensitive comparisons
    ///      *   integer: treat values as integers, non-integers are compared as strings
    ///      *   twostate: don't allow the natural (unordered state)
    ///      */
    /// ```
    ///

    /// `void sort (in nsIDOMNode aNode, in AString aSortKey, in AString aSortHints);`
    #[inline]
    pub unsafe fn Sort(&self, aNode: *const nsIDOMNode, aSortKey: &::nsstring::nsAString, aSortHints: &::nsstring::nsAString) -> nsresult {
        ((*self.vtable).Sort)(self, aNode, aSortKey, aSortHints)
    }


}