Struct nsstring::nsACString
[−]
[src]
#[repr(C)]pub struct nsACString { /* fields omitted */ }
This type is the abstract type which is used for interacting with strings in rust. Each string type can derefence to an instance of this type, which provides the useful operations on strings.
NOTE: Rust thinks this type has a size of 0, because the data associated with it is not necessarially safe to move. It is not safe to construct a nsAString yourself, unless it is received by dereferencing one of these types.
NOTE: The [u8; 0]
member is zero sized, and only exists to prevent
the construction by code outside of this module. It is used instead
of a private ()
member because the improper_ctypes
lint complains
about some ZST members in extern "C"
function declarations.
Methods
impl nsACString
[src]
pub fn assign<T: nsCStringLike + ?Sized>(&mut self, other: &T)
[src]
Assign the value of other
into self, overwriting any value
currently stored. Performs an optimized assignment when possible
if other
is a nsA[C]String
.
pub fn fallible_assign<T: nsCStringLike + ?Sized>(
&mut self,
other: &T
) -> Result<(), ()>
[src]
&mut self,
other: &T
) -> Result<(), ()>
Assign the value of other
into self, overwriting any value
currently stored. Performs an optimized assignment when possible
if other
is a nsA[C]String
.
Returns Ok(()) on success, and Err(()) if the allocation failed.
pub fn take_from(&mut self, other: &mut nsACString)
[src]
Take the value of other
and set self
, overwriting any value
currently stored. The passed-in string will be truncated.
pub fn fallible_take_from(&mut self, other: &mut nsACString) -> Result<(), ()>
[src]
Take the value of other
and set self
, overwriting any value
currently stored. If this function fails, the source string will
be left untouched, otherwise it will be truncated.
Returns Ok(()) on success, and Err(()) if the allocation failed.
pub fn append<T: nsCStringLike + ?Sized>(&mut self, other: &T)
[src]
Append the value of other
into self.
pub fn fallible_append<T: nsCStringLike + ?Sized>(
&mut self,
other: &T
) -> Result<(), ()>
[src]
&mut self,
other: &T
) -> Result<(), ()>
Append the value of other
into self.
Returns Ok(()) on success, and Err(()) if the allocation failed.
pub unsafe fn set_length(&mut self, len: u32)
[src]
Set the length of the string to the passed-in length, and expand the backing capacity to match. This method is unsafe as it can expose uninitialized memory when len is greater than the current length of the string.
pub unsafe fn fallible_set_length(&mut self, len: u32) -> Result<(), ()>
[src]
Set the length of the string to the passed-in length, and expand the backing capacity to match. This method is unsafe as it can expose uninitialized memory when len is greater than the current length of the string.
Returns Ok(()) on success, and Err(()) if the allocation failed.
pub fn truncate(&mut self)
[src]
pub fn to_mut(&mut self) -> &mut [u8]
[src]
Get a &mut
reference to the backing data for this string.
This method will allocate and copy if the current backing buffer
is immutable or shared.
pub fn fallible_to_mut(&mut self) -> Result<&mut [u8], ()>
[src]
Get a &mut
reference to the backing data for this string.
This method will allocate and copy if the current backing buffer
is immutable or shared.
Returns Ok(&mut [T])
on success, and Err(())
if the
allocation failed.
impl nsACString
[src]
pub fn assign_utf16<T: nsStringLike + ?Sized>(&mut self, other: &T)
[src]
pub fn fallible_assign_utf16<T: nsStringLike + ?Sized>(
&mut self,
other: &T
) -> Result<(), ()>
[src]
&mut self,
other: &T
) -> Result<(), ()>
pub fn append_utf16<T: nsStringLike + ?Sized>(&mut self, other: &T)
[src]
pub fn fallible_append_utf16<T: nsStringLike + ?Sized>(
&mut self,
other: &T
) -> Result<(), ()>
[src]
&mut self,
other: &T
) -> Result<(), ()>
pub unsafe fn as_str_unchecked(&self) -> &str
[src]
Methods from Deref<Target = [u8]>
pub fn len(&self) -> usize
1.0.0[src]
pub fn is_empty(&self) -> bool
1.0.0[src]
pub fn first(&self) -> Option<&T>
1.0.0[src]
Returns the first element of the slice, or None
if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&10), v.first()); let w: &[i32] = &[]; assert_eq!(None, w.first());
pub fn split_first(&self) -> Option<(&T, &[T])>
1.5.0[src]
Returns the first and all the rest of the elements of the slice, or None
if it is empty.
Examples
let x = &[0, 1, 2]; if let Some((first, elements)) = x.split_first() { assert_eq!(first, &0); assert_eq!(elements, &[1, 2]); }
pub fn split_last(&self) -> Option<(&T, &[T])>
1.5.0[src]
Returns the last and all the rest of the elements of the slice, or None
if it is empty.
Examples
let x = &[0, 1, 2]; if let Some((last, elements)) = x.split_last() { assert_eq!(last, &2); assert_eq!(elements, &[0, 1]); }
pub fn last(&self) -> Option<&T>
1.0.0[src]
Returns the last element of the slice, or None
if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&30), v.last()); let w: &[i32] = &[]; assert_eq!(None, w.last());
pub fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output> where
I: SliceIndex<[T]>,
1.0.0[src]
I: SliceIndex<[T]>,
Returns a reference to an element or subslice depending on the type of index.
- If given a position, returns a reference to the element at that
position or
None
if out of bounds. - If given a range, returns the subslice corresponding to that range,
or
None
if out of bounds.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&40), v.get(1)); assert_eq!(Some(&[10, 40][..]), v.get(0..2)); assert_eq!(None, v.get(3)); assert_eq!(None, v.get(0..4));
pub unsafe fn get_unchecked<I>(
&self,
index: I
) -> &<I as SliceIndex<[T]>>::Output where
I: SliceIndex<[T]>,
1.0.0[src]
&self,
index: I
) -> &<I as SliceIndex<[T]>>::Output where
I: SliceIndex<[T]>,
Returns a reference to an element or subslice, without doing bounds checking.
This is generally not recommended, use with caution! For a safe
alternative see get
.
Examples
let x = &[1, 2, 4]; unsafe { assert_eq!(x.get_unchecked(1), &2); }
pub fn as_ptr(&self) -> *const T
1.0.0[src]
Returns a raw pointer to the slice's buffer.
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
Examples
let x = &[1, 2, 4]; let x_ptr = x.as_ptr(); unsafe { for i in 0..x.len() { assert_eq!(x.get_unchecked(i), &*x_ptr.offset(i as isize)); } }
pub fn iter(&self) -> Iter<T>
1.0.0[src]
Returns an iterator over the slice.
Examples
let x = &[1, 2, 4]; let mut iterator = x.iter(); assert_eq!(iterator.next(), Some(&1)); assert_eq!(iterator.next(), Some(&2)); assert_eq!(iterator.next(), Some(&4)); assert_eq!(iterator.next(), None);
pub fn windows(&self, size: usize) -> Windows<T>
1.0.0[src]
Returns an iterator over all contiguous windows of length
size
. The windows overlap. If the slice is shorter than
size
, the iterator returns no values.
Panics
Panics if size
is 0.
Examples
let slice = ['r', 'u', 's', 't']; let mut iter = slice.windows(2); assert_eq!(iter.next().unwrap(), &['r', 'u']); assert_eq!(iter.next().unwrap(), &['u', 's']); assert_eq!(iter.next().unwrap(), &['s', 't']); assert!(iter.next().is_none());
If the slice is shorter than size
:
let slice = ['f', 'o', 'o']; let mut iter = slice.windows(4); assert!(iter.next().is_none());
pub fn chunks(&self, size: usize) -> Chunks<T>
1.0.0[src]
Returns an iterator over size
elements of the slice at a
time. The chunks are slices and do not overlap. If size
does
not divide the length of the slice, then the last chunk will
not have length size
.
Panics
Panics if size
is 0.
Examples
let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.chunks(2); assert_eq!(iter.next().unwrap(), &['l', 'o']); assert_eq!(iter.next().unwrap(), &['r', 'e']); assert_eq!(iter.next().unwrap(), &['m']); assert!(iter.next().is_none());
pub fn split_at(&self, mid: usize) -> (&[T], &[T])
1.0.0[src]
Divides one slice into two at an index.
The first will contain all indices from [0, mid)
(excluding
the index mid
itself) and the second will contain all
indices from [mid, len)
(excluding the index len
itself).
Panics
Panics if mid > len
.
Examples
let v = [1, 2, 3, 4, 5, 6]; { let (left, right) = v.split_at(0); assert!(left == []); assert!(right == [1, 2, 3, 4, 5, 6]); } { let (left, right) = v.split_at(2); assert!(left == [1, 2]); assert!(right == [3, 4, 5, 6]); } { let (left, right) = v.split_at(6); assert!(left == [1, 2, 3, 4, 5, 6]); assert!(right == []); }
pub fn split<F>(&self, pred: F) -> Split<T, F> where
F: FnMut(&T) -> bool,
1.0.0[src]
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred
. The matched element is not contained in the subslices.
Examples
let slice = [10, 40, 33, 20]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());
If the first element is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last element in the slice is matched, an empty slice will be the last item returned by the iterator:
let slice = [10, 40, 33]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40]); assert_eq!(iter.next().unwrap(), &[]); assert!(iter.next().is_none());
If two matched elements are directly adjacent, an empty slice will be present between them:
let slice = [10, 6, 33, 20]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10]); assert_eq!(iter.next().unwrap(), &[]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());
pub fn rsplit<F>(&self, pred: F) -> RSplit<T, F> where
F: FnMut(&T) -> bool,
[src]
F: FnMut(&T) -> bool,
slice_rsplit
)Returns an iterator over subslices separated by elements that match
pred
, starting at the end of the slice and working backwards.
The matched element is not contained in the subslices.
Examples
#![feature(slice_rsplit)] let slice = [11, 22, 33, 0, 44, 55]; let mut iter = slice.rsplit(|num| *num == 0); assert_eq!(iter.next().unwrap(), &[44, 55]); assert_eq!(iter.next().unwrap(), &[11, 22, 33]); assert_eq!(iter.next(), None);
As with split()
, if the first or last element is matched, an empty
slice will be the first (or last) item returned by the iterator.
#![feature(slice_rsplit)] let v = &[0, 1, 1, 2, 3, 5, 8]; let mut it = v.rsplit(|n| *n % 2 == 0); assert_eq!(it.next().unwrap(), &[]); assert_eq!(it.next().unwrap(), &[3, 5]); assert_eq!(it.next().unwrap(), &[1, 1]); assert_eq!(it.next().unwrap(), &[]); assert_eq!(it.next(), None);
pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where
F: FnMut(&T) -> bool,
1.0.0[src]
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred
, limited to returning at most n
items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once by numbers divisible by 3 (i.e. [10, 40]
,
[20, 60, 50]
):
let v = [10, 40, 30, 20, 60, 50]; for group in v.splitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }
pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where
F: FnMut(&T) -> bool,
1.0.0[src]
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred
limited to returning at most n
items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once, starting from the end, by numbers divisible
by 3 (i.e. [50]
, [10, 40, 30, 20]
):
let v = [10, 40, 30, 20, 60, 50]; for group in v.rsplitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }
pub fn contains(&self, x: &T) -> bool where
T: PartialEq<T>,
1.0.0[src]
T: PartialEq<T>,
Returns true
if the slice contains an element with the given value.
Examples
let v = [10, 40, 30]; assert!(v.contains(&30)); assert!(!v.contains(&50));
pub fn starts_with(&self, needle: &[T]) -> bool where
T: PartialEq<T>,
1.0.0[src]
T: PartialEq<T>,
Returns true
if needle
is a prefix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.starts_with(&[10])); assert!(v.starts_with(&[10, 40])); assert!(!v.starts_with(&[50])); assert!(!v.starts_with(&[10, 50]));
Always returns true
if needle
is an empty slice:
let v = &[10, 40, 30]; assert!(v.starts_with(&[])); let v: &[u8] = &[]; assert!(v.starts_with(&[]));
pub fn ends_with(&self, needle: &[T]) -> bool where
T: PartialEq<T>,
1.0.0[src]
T: PartialEq<T>,
Returns true
if needle
is a suffix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.ends_with(&[30])); assert!(v.ends_with(&[40, 30])); assert!(!v.ends_with(&[50])); assert!(!v.ends_with(&[50, 30]));
Always returns true
if needle
is an empty slice:
let v = &[10, 40, 30]; assert!(v.ends_with(&[])); let v: &[u8] = &[]; assert!(v.ends_with(&[]));
pub fn binary_search(&self, x: &T) -> Result<usize, usize> where
T: Ord,
1.0.0[src]
T: Ord,
Binary searches this sorted slice for a given element.
If the value is found then Ok
is returned, containing the
index of the matching element; if the value is not found then
Err
is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
Examples
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; assert_eq!(s.binary_search(&13), Ok(9)); assert_eq!(s.binary_search(&4), Err(7)); assert_eq!(s.binary_search(&100), Err(13)); let r = s.binary_search(&1); assert!(match r { Ok(1...4) => true, _ => false, });
pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> where
F: FnMut(&'a T) -> Ordering,
1.0.0[src]
F: FnMut(&'a T) -> Ordering,
Binary searches this sorted slice with a comparator function.
The comparator function should implement an order consistent
with the sort order of the underlying slice, returning an
order code that indicates whether its argument is Less
,
Equal
or Greater
the desired target.
If a matching value is found then returns Ok
, containing
the index for the matched element; if no match is found then
Err
is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
Examples
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; let seek = 13; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); let seek = 4; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); let seek = 100; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); let seek = 1; let r = s.binary_search_by(|probe| probe.cmp(&seek)); assert!(match r { Ok(1...4) => true, _ => false, });
pub fn binary_search_by_key<'a, B, F>(
&'a self,
b: &B,
f: F
) -> Result<usize, usize> where
B: Ord,
F: FnMut(&'a T) -> B,
1.10.0[src]
&'a self,
b: &B,
f: F
) -> Result<usize, usize> where
B: Ord,
F: FnMut(&'a T) -> B,
Binary searches this sorted slice with a key extraction function.
Assumes that the slice is sorted by the key, for instance with
sort_by_key
using the same key extraction function.
If a matching value is found then returns Ok
, containing the
index for the matched element; if no match is found then Err
is returned, containing the index where a matching element could
be inserted while maintaining sorted order.
Examples
Looks up a series of four elements in a slice of pairs sorted by
their second elements. The first is found, with a uniquely
determined position; the second and third are not found; the
fourth could match any position in [1, 4]
.
let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1), (1, 2), (2, 3), (4, 5), (5, 8), (3, 13), (1, 21), (2, 34), (4, 55)]; assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b), Ok(9)); assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b), Err(7)); assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13)); let r = s.binary_search_by_key(&1, |&(a,b)| b); assert!(match r { Ok(1...4) => true, _ => false, });
pub fn to_vec(&self) -> Vec<T> where
T: Clone,
1.0.0[src]
T: Clone,
Copies self
into a new Vec
.
Examples
let s = [10, 40, 30]; let x = s.to_vec(); // Here, `s` and `x` can be modified independently.
Trait Implementations
impl Deref for nsACString
[src]
type Target = [u8]
The resulting type after dereferencing.
fn deref(&self) -> &[u8]
[src]
Dereferences the value.
impl AsRef<[u8]> for nsACString
[src]
impl PartialEq for nsACString
[src]
fn eq(&self, other: &nsACString) -> bool
[src]
This method tests for self
and other
values to be equal, and is used by ==
. Read more
fn ne(&self, other: &Rhs) -> bool
1.0.0[src]
This method tests for !=
.
impl PartialEq<[u8]> for nsACString
[src]
fn eq(&self, other: &[u8]) -> bool
[src]
This method tests for self
and other
values to be equal, and is used by ==
. Read more
fn ne(&self, other: &Rhs) -> bool
1.0.0[src]
This method tests for !=
.
impl PartialEq<nsCString> for nsACString
[src]
fn eq(&self, other: &nsCString) -> bool
[src]
This method tests for self
and other
values to be equal, and is used by ==
. Read more
fn ne(&self, other: &Rhs) -> bool
1.0.0[src]
This method tests for !=
.
impl<'a> PartialEq<nsCStr<'a>> for nsACString
[src]
fn eq(&self, other: &nsCStr<'a>) -> bool
[src]
This method tests for self
and other
values to be equal, and is used by ==
. Read more
fn ne(&self, other: &Rhs) -> bool
1.0.0[src]
This method tests for !=
.
impl<'a> From<&'a nsACString> for nsCStr<'a>
[src]
fn from(s: &'a nsACString) -> nsCStr<'a>
[src]
Performs the conversion.
impl<'a> From<&'a nsACString> for nsCString
[src]
fn from(s: &'a nsACString) -> nsCString
[src]
Performs the conversion.
impl nsCStringLike for nsACString
[src]
fn adapt(&self) -> nsCStringAdapter
[src]
impl Write for nsACString
[src]
fn write_str(&mut self, s: &str) -> Result<(), Error>
[src]
Writes a slice of bytes into this writer, returning whether the write succeeded. Read more
fn write_char(&mut self, c: char) -> Result<(), Error>
1.1.0[src]
Writes a [char
] into this writer, returning whether the write succeeded. Read more
fn write_fmt(&mut self, args: Arguments) -> Result<(), Error>
1.0.0[src]
Glue for usage of the [write!
] macro with implementors of this trait. Read more
impl Display for nsACString
[src]
fn fmt(&self, f: &mut Formatter) -> Result<(), Error>
[src]
Formats the value using the given formatter. Read more
impl Debug for nsACString
[src]
fn fmt(&self, f: &mut Formatter) -> Result<(), Error>
[src]
Formats the value using the given formatter. Read more